Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
F1000Res ; 13: 274, 2024.
Article in English | MEDLINE | ID: mdl-38725640

ABSTRACT

Background: The most recent advances in Computed Tomography (CT) image reconstruction technology are Deep learning image reconstruction (DLIR) algorithms. Due to drawbacks in Iterative reconstruction (IR) techniques such as negative image texture and nonlinear spatial resolutions, DLIRs are gradually replacing them. However, the potential use of DLIR in Head and Chest CT has to be examined further. Hence, the purpose of the study is to review the influence of DLIR on Radiation dose (RD), Image noise (IN), and outcomes of the studies compared with IR and FBP in Head and Chest CT examinations. Methods: We performed a detailed search in PubMed, Scopus, Web of Science, Cochrane Library, and Embase to find the articles reported using DLIR for Head and Chest CT examinations between 2017 to 2023. Data were retrieved from the short-listed studies using Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. Results: Out of 196 articles searched, 15 articles were included. A total of 1292 sample size was included. 14 articles were rated as high and 1 article as moderate quality. All studies compared DLIR to IR techniques. 5 studies compared DLIR with IR and FBP. The review showed that DLIR improved IQ, and reduced RD and IN for CT Head and Chest examinations. Conclusions: DLIR algorithm have demonstrated a noted enhancement in IQ with reduced IN for CT Head and Chest examinations at lower dose compared with IR and FBP. DLIR showed potential for enhancing patient care by reducing radiation risks and increasing diagnostic accuracy.


Subject(s)
Algorithms , Deep Learning , Head , Radiation Dosage , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Head/diagnostic imaging , Image Processing, Computer-Assisted/methods , Thorax/diagnostic imaging , Radiography, Thoracic/methods , Signal-To-Noise Ratio
2.
Mycology ; 15(1): 70-84, 2024.
Article in English | MEDLINE | ID: mdl-38558844

ABSTRACT

In India, the incidence of mucormycosis reached high levels during 2021-2022, coinciding with the COVID-19 pandemic. In response to this, we established a multicentric ambispective cohort of patients hospitalised with mucormycosis across India. In this paper, we report their baseline profile, clinical characteristics and outcomes at discharge. Patients hospitalized for mucormycosis during March-July 2021 were included. Mucormycosis was diagnosed based on mycological confirmation on direct microscopy (KOH/Calcofluor white stain), culture, histopathology, or supportive evidence from endoscopy or imaging. After consent, trained data collectors used medical records and telephonic interviews to capture data in a pre-tested structured questionnaire. At baseline, we recruited 686 patients from 26 study hospitals, of whom 72.3% were males, 78% had a prior history of diabetes, 53.2% had a history of corticosteroid treatment, and 80% were associated with COVID-19. Pain, numbness or swelling of the face were the commonest symptoms (73.3%). Liposomal Amphotericin B was the commonest drug formulation used (67.1%), and endoscopic sinus surgery was the most common surgical procedure (73.6%). At discharge, the disease was stable in 43.3%, in regression for 29.9% but 9.6% died during hospitalization. Among survivors, commonly reported disabilities included facial disfigurement (18.4%) and difficulties in chewing/swallowing (17.8%). Though the risk of mortality was only 1 in 10, the disability due to the disease was very high. This cohort study could enhance our understanding of the disease's clinical progression and help frame standard treatment guidelines.

3.
Tissue Barriers ; : 2347070, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682891

ABSTRACT

Disruptions in polyamine metabolism have been identified as contributing factors to various central nervous system disorders. Our laboratory has previously highlighted the crucial role of polyamine oxidation in retinal disease models, specifically noting elevated levels of spermine oxidase (SMOX) in inner retinal neurons. Our prior research demonstrated that inhibiting SMOX with MDL 72527 protected against vascular injury and microglial activation induced by hyperoxia in the retina. However, the effects of SMOX inhibition on retinal neovascularization and vascular permeability, along with the underlying molecular mechanisms of vascular protection, remain incompletely understood. In this study, we utilized the oxygen-induced retinopathy (OIR) model to explore the impact of SMOX inhibition on retinal neovascularization, vascular permeability, and the molecular mechanisms underlying MDL 72527-mediated vasoprotection in the OIR retina. Our findings indicate that inhibiting SMOX with MDL 72527 mitigated vaso-obliteration and neovascularization in the OIR retina. Additionally, it reduced OIR-induced vascular permeability and Claudin-5 expression, suppressed acrolein-conjugated protein levels, and downregulated P38/ERK1/2/STAT3 signaling. Furthermore, our results revealed that treatment with BSA-Acrolein conjugates significantly decreased the viability of human retinal endothelial cells (HRECs) and activated P38 signaling. These observations contribute valuable insights into the potential therapeutic benefits of SMOX inhibition by MDL 72527 in ischemic retinopathy.

4.
J Clin Med ; 12(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38002758

ABSTRACT

Compromised blood-retinal barrier (BRB) integrity is a significant factor in ocular diseases like uveitis and retinopathies, leading to pathological vascular permeability and retinal edema. Adherens and tight junction (AJ and TJ) dysregulation due to retinal inflammation plays a pivotal role in BRB disruption. We investigated the potential of ICG001, which inhibits ß-catenin-mediated transcription, in stabilizing cell junctions and preventing BRB leakage. In vitro studies using human retinal endothelial cells (HRECs) showed that ICG001 treatment improved ß-Catenin distribution within AJs post lipopolysaccharide (LPS) treatment and enhanced monolayer barrier resistance. The in vivo experiments involved a mouse model of LPS-induced ocular inflammation. LPS treatment resulted in increased albumin leakage from retinal vessels, elevated vascular endothelial growth factor (VEGF) and Plasmalemmal Vesicle-Associated Protein (PLVAP) expression, as well as microglia and macroglia activation. ICG001 treatment (i.p.) effectively mitigated albumin leakage, reduced VEGF and PLVAP expression, and reduced the number of activated microglia/macrophages. Furthermore, ICG001 treatment suppressed the surge in inflammatory cytokine synthesis induced by LPS. These findings highlight the potential of interventions targeting ß-Catenin to enhance cell junction stability and improve compromised barrier integrity in various ocular inflammatory diseases, offering hope for better management and treatment options.

5.
Eur J Pharmacol ; 960: 176177, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37931839

ABSTRACT

Cryptococcus neoformans, an opportunistic fungal pathogen, primarily infects immunodeficient patients frequently causing cryptococcal meningoencephalitis (CM). Increased intracranial pressure (ICP) is a serious complication responsible for increased morbidity and mortality in CM patients. Non-invasive pharmacological agents that mitigate ICP could be beneficial in treating CM patients. The objective of the study was to investigate the efficacy of acetazolamide (AZA), candesartan (CAN), and triciribine (TCBN), in combination with the antifungal fluconazole, on C. neoformans-induced endothelial, brain, and lung injury in an experimental mouse model of CM. Our study shows that C. neoformans increases the expression of brain endothelial cell (BEC) junction proteins Claudin-5 (Cldn5) and VE-Cadherin to induce pathological cell-barrier remodeling and gap formation associated with increased Akt and p38 MAPK activation. All three agents inhibited C. neoformans-induced endothelial gap formation, only CAN and TCBN significantly reduced C. neoformans-induced Cldn5 expression, and only TCBN was effective in inhibiting Akt and p38MAPK. Interestingly, although C. neoformans did not cause brain or lung edema in mice, it induced lung and brain injuries, which were significantly reversed by AZA, CAN, or TCBN. Our study provides novel insights into the direct effects of C. neoformans on BECs in vitro, and the potential benefits of using AZA, CAN, or TCBN in the management of CM patients.


Subject(s)
Cryptococcus neoformans , Meningitis, Cryptococcal , Meningoencephalitis , Humans , Animals , Mice , Fluconazole/pharmacology , Fluconazole/therapeutic use , Meningitis, Cryptococcal/drug therapy , Meningitis, Cryptococcal/microbiology , Acetazolamide/therapeutic use , Proto-Oncogene Proteins c-akt , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Meningoencephalitis/drug therapy , Meningoencephalitis/microbiology , Meningoencephalitis/pathology
6.
Cell Death Dis ; 14(10): 661, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816735

ABSTRACT

We previously found that global deletion of the mitochondrial enzyme arginase 2 (A2) limits optic nerve crush (ONC)-induced neuronal death. Herein, we examined the cell-specific role of A2 in this pathology by studies using wild type (WT), neuronal-specific calbindin 2 A2 KO (Calb2cre/+ A2 f/f), myeloid-specific A2 KO (LysMcre/+ A2f/f), endothelial-specific A2 KO (Cdh5cre/+ A2f/f), and floxed controls. We also examined the impact of A2 overexpression on mitochondrial function in retinal neuronal R28 cells. Immunolabeling showed increased A2 expression in ganglion cell layer (GCL) neurons of WT mice within 6 h-post injury and inner retinal neurons after 7 days. Calb2 A2 KO mice showed improved neuronal survival, decreased TUNEL-positive neurons, and improved retinal function compared to floxed littermates. Neuronal loss was unchanged by A2 deletion in myeloid or endothelial cells. We also found increased expression of neurotrophins (BDNF, FGF2) and improved survival signaling (pAKT, pERK1/2) in Calb2 A2 KO retinas within 24-hour post-ONC along with suppression of inflammatory mediators (IL1ß, TNFα, IL6, and iNOS) and apoptotic markers (cleavage of caspase3 and PARP). ONC increased GFAP and Iba1 immunostaining in floxed controls, and Calb2 A2 KO dampened this effect. Overexpression of A2 in R28 cells increased Drp1 expression, and decreased mitochondrial respiration, whereas ABH-induced inhibition of A2 decreased Drp1 expression and improved mitochondrial respiration. Finally, A2 overexpression or excitotoxic treatment with glutamate significantly impaired mitochondrial function in R28 cells as shown by significant reductions in basal respiration, maximal respiration, and ATP production. Further, glutamate treatment of A2 overexpressing cells did not induce further deterioration in their mitochondrial function, indicating that A2 overexpression or glutamate insult induce comparable alterations in mitochondrial function. Our data indicate that neuronal A2 expression is neurotoxic after injury, and A2 deletion in Calb2 expressing neurons limits ONC-induced retinal neurodegeneration and improves visual function.


Subject(s)
Arginase , Optic Nerve Injuries , Animals , Mice , Apoptosis , Arginase/genetics , Arginase/metabolism , Calbindin 2 , Disease Models, Animal , Endothelial Cells/metabolism , Glutamates , Nerve Crush , Optic Nerve/metabolism , Optic Nerve Injuries/metabolism
8.
Biomed Pharmacother ; 162: 114714, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37080089

ABSTRACT

Proliferative retinopathies are the leading cause of irreversible blindness in all ages, and there is a critical need to identify novel therapies. We investigated the impact of triciribine (TCBN), a tricyclic nucleoside analog and a weak Akt inhibitor, on retinal neurovascular injury, vascular permeability, and inflammation in oxygen-induced retinopathy (OIR). Post-natal day 7 (P7) mouse pups were subjected to OIR, and treated (i.p.) with TCBN or vehicle from P14-P16 and compared with age-matched, normoxic, vehicle or TCBN-treated controls. P17 retinas were processed for flat mounts, immunostaining, Western blotting, and qRT-PCR studies. Fluorescein angiography, electroretinography, and spectral domain optical coherence tomography were performed on days P21, P26, and P30, respectively. TCBN treatment significantly reduced pathological neovascularization, vaso-obliteration, and inflammation marked by reduced TNFα, IL6, MCP-1, Iba1, and F4/80 (macrophage/microglia markers) expression compared to the vehicle-treated OIR mouse retinas. Pathological expression of VEGF (vascular endothelial growth factor), and claudin-5 compromised the blood-retinal barrier integrity in the OIR retinas correlating with increased vascular permeability and neovascular tuft formation, which were blunted by TCBN treatment. Of note, there were no changes in the retinal architecture or retinal cell function in response to TCBN in the normoxia or OIR mice. We conclude that TCBN protects against pathological neovascularization, restores blood-retinal barrier homeostasis, and reduces retinal inflammation without adversely affecting the retinal structure and neuronal function in a mouse model of OIR. Our data suggest that TCBN may provide a novel therapeutic option for proliferative retinopathy.


Subject(s)
Retinal Diseases , Retinal Neovascularization , Vitreoretinopathy, Proliferative , Animals , Mice , Retinal Neovascularization/pathology , Vascular Endothelial Growth Factor A/metabolism , Capillary Permeability , Animals, Newborn , Neovascularization, Pathologic , Oxygen/adverse effects , Inflammation/complications , Disease Models, Animal , Mice, Inbred C57BL
9.
J Mater Chem B ; 11(6): 1365-1377, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36655691

ABSTRACT

Numerous reports emphasize the inverse relationship between the mutant p53 protein and P-glycoprotein overexpression, which adversely affects the chemosensitivity of cancer cells. In this study, the cationised pullulan polysaccharide was conjugated with dithiobutyric acid (PPDBA) for the intracellular delivery of doxorubicin and the p53 gene. The transfection efficiency of PPDBA using the apoptotic gene p53 and its ability to modulate efflux pumps in the presence and absence of glutathione and the subsequent drug retention were studied in different cell lines. The percentage cell death mediated by the PPDBA/p53 nanoplex (4 : 1 ratio) was 59%, and by DOX alone a 50% cell death was attained at 3.13 µM in C6 cells, but the percentage cell death mediated by PPDBA/p53 (4 : 1) in combination with 1 µM DOX was as high as 98%. The effect of PPDBA II/p53/DOX nanoplexes on the mouse tumor model was evaluated in BALB/c mice which demonstrated good efficacy when compared with the drug or gene alone.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Mice , Animals , Tumor Suppressor Protein p53/genetics , Genes, p53 , Doxorubicin/pharmacology , Glucans/pharmacology , Neoplasms/genetics
10.
Cells ; 11(24)2022 12 16.
Article in English | MEDLINE | ID: mdl-36552864

ABSTRACT

Multiple Sclerosis (MS) is a highly disabling neurological disease characterized by inflammation, neuronal damage, and demyelination. Vision impairment is one of the major clinical features of MS. Previous studies from our lab have shown that MDL 72527, a pharmacological inhibitor of spermine oxidase (SMOX), is protective against neurodegeneration and inflammation in the models of diabetic retinopathy and excitotoxicity. In the present study, utilizing the experimental autoimmune encephalomyelitis (EAE) model of MS, we determined the impact of SMOX blockade on retinal neurodegeneration and optic nerve inflammation. The increased expression of SMOX observed in EAE retinas was associated with a significant loss of retinal ganglion cells, degeneration of synaptic contacts, and reduced visual acuity. MDL 72527-treated mice exhibited markedly reduced motor deficits, improved neuronal survival, the preservation of synapses, and improved visual acuity compared to the vehicle-treated group. The EAE-induced increase in macrophage/microglia was markedly reduced by SMOX inhibition. Upregulated acrolein conjugates in the EAE retina were decreased through MDL 72527 treatment. Mechanistically, the EAE-induced ERK-STAT3 signaling was blunted by SMOX inhibition. In conclusion, our studies demonstrate the potential benefits of targeting SMOX to treat MS-mediated neuroinflammation and vision loss.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Optic Neuritis , Animals , Mice , Retinal Ganglion Cells , Multiple Sclerosis/drug therapy , Multiple Sclerosis/complications , Optic Neuritis/drug therapy , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Inflammation/drug therapy , Inflammation/complications , Optic Nerve , Visual Acuity , Models, Theoretical
11.
Cell Death Dis ; 13(8): 745, 2022 08 29.
Article in English | MEDLINE | ID: mdl-36038541

ABSTRACT

Current therapies for treatment of proliferative retinopathy focus on retinal neovascularization (RNV) during advanced disease and can trigger adverse side-effects. Here, we have tested a new strategy for limiting neurovascular injury and promoting repair during early-stage disease. We have recently shown that treatment with a stable, pegylated drug form of the ureohydrolase enzyme arginase 1 (A1) provides neuroprotection in acute models of ischemia/reperfusion injury, optic nerve crush, and ischemic stroke. Now, we have determined the effects of this treatment on RNV, vascular repair, and retinal function in the mouse oxygen-induced retinopathy (OIR) model of retinopathy of prematurity (ROP). Our studies in the OIR model show that treatment with pegylated A1 (PEG-A1), inhibits pathological RNV, promotes angiogenic repair, and improves retinal function by a mechanism involving decreased expression of TNF, iNOS, and VEGF and increased expression of FGF2 and A1. We further show that A1 is expressed in myeloid cells and areas of RNV in retinal sections from mice with OIR and human diabetic retinopathy (DR) patients and in blood samples from ROP patients. Moreover, studies using knockout mice with hemizygous deletion of A1 show worsened RNV and retinal injury, supporting the protective role of A1 in limiting the OIR-induced pathology. Collectively, A1 is critically involved in reparative angiogenesis and neuroprotection in OIR. Pegylated A1 may offer a novel therapy for limiting retinal injury and promoting repair during proliferative retinopathy.


Subject(s)
Retinal Neovascularization , Retinopathy of Prematurity , Animals , Arginase/genetics , Arginase/metabolism , Disease Models, Animal , Humans , Infant, Newborn , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic , Oxygen , Polyethylene Glycols/therapeutic use , Retinal Neovascularization/pathology , Retinopathy of Prematurity/drug therapy , Retinopathy of Prematurity/metabolism , Retinopathy of Prematurity/pathology
12.
Cells ; 11(11)2022 05 29.
Article in English | MEDLINE | ID: mdl-35681477

ABSTRACT

The multi-gene claudin (CLDN) family of tight junction proteins have isoform-specific roles in blood-tissue barrier regulation. CLDN17, a putative anion pore-forming CLDN based on its structural characterization, is assumed to regulate anion balance across the blood-tissue barriers. However, our knowledge about CLDN17 in physiology and pathology is limited. The current study investigated how Cldn17 deficiency in mice affects blood electrolytes and kidney structure. Cldn17-/- mice revealed no breeding abnormalities, but the newborn pups exhibited delayed growth. Adult Cldn17-/- mice displayed electrolyte imbalance, oxidative stress, and injury to the kidneys. Ingenuity pathway analysis followed by RNA-sequencing revealed hyperactivation of signaling pathways and downregulation of SOD1 expression in kidneys associated with inflammation and reactive oxygen species generation, demonstrating the importance of Cldn17 in the maintenance of electrolytes and reactive oxygen species across the blood-tissue barrier.


Subject(s)
Claudins , Kidney , Oxidative Stress , Water-Electrolyte Balance , Animals , Anions/metabolism , Claudins/genetics , Claudins/metabolism , Kidney/physiopathology , Mice , Mice, Knockout , Reactive Oxygen Species/metabolism
13.
Int J Mol Sci ; 23(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35216248

ABSTRACT

Polyamine oxidation plays a major role in neurodegenerative diseases. Previous studies from our laboratory demonstrated that spermine oxidase (SMOX, a member of the polyamine oxidase family) inhibition using MDL 72527 reduced neurodegeneration in models of retinal excitotoxicity and diabetic retinopathy. However, the mechanisms behind the neuroprotection offered by SMOX inhibition are not completely studied. Utilizing the experimental model of retinal excitotoxicity, the present study determined the impact of SMOX blockade in retinal neuroinflammation. Our results demonstrated upregulation in the number of cells positive for Iba-1 (ionized calcium-binding adaptor molecule 1), CD (Cluster Differentiation) 68, and CD16/32 in excitotoxicity-induced retinas, while MDL 72527 treatment reduced these changes, along with increases in the number of cells positive for Arginase1 and CD206. When retinal excitotoxicity upregulated several pro-inflammatory genes, MDL 72527 treatment reduced many of them and increased anti-inflammatory genes. Furthermore, SMOX inhibition upregulated antioxidant signaling (indicated by elevated Nrf2 and HO-1 levels) and reduced protein-conjugated acrolein in excitotoxic retinas. In vitro studies using C8-B4 cells showed changes in cellular morphology and increased reactive oxygen species formation in response to acrolein (a product of SMOX activity) treatment. Overall, our findings indicate that the inhibition SMOX pathway reduced neuroinflammation and upregulated antioxidant signaling in the retina.


Subject(s)
Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Oxidoreductases Acting on CH-NH Group Donors/antagonists & inhibitors , Retina/diagnostic imaging , Retina/metabolism , Animals , Antioxidants/metabolism , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Oxidation-Reduction/drug effects , Putrescine/analogs & derivatives , Putrescine/pharmacology , Signal Transduction/drug effects , Polyamine Oxidase
14.
J Assoc Physicians India ; 69(12): 11-12, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35057601

ABSTRACT

Non syndromic Anonychia congenita or congenital absence of finger and toe nails is a rare disorder known to occur due to autosomal recessive inheritance of mutation in the R-spondin-4 gene. We present a case of a 32 year old female born of a non-consanguineous marriage presenting with complete absence of finger and toe nails since birth and similar presentation in family members over four generations, suggesting an autosomal dominant inheritance.


Subject(s)
Nails, Malformed , Adult , Female , Fingers , Humans , Mutation , Nails , Nails, Malformed/congenital , Nails, Malformed/genetics
15.
Tissue Barriers ; 10(3): 2000300, 2022 07 03.
Article in English | MEDLINE | ID: mdl-34740309

ABSTRACT

Cell junctions maintain the blood-tissue barriers to preserve vascular and tissue integrity. Viral infections reportedly modulate cell-cell junctions to facilitate their invasion. However, information on the effect of COVID-19 infection on the gene expression of cell junction and cytoskeletal proteins is limited. Using the Gene Expression Omnibus and Reactome databases, we analyzed the data on human lung A549, NHBE, and Calu-3 cells for the expression changes in cell junction and cytoskeletal proteins by SARS-CoV-2 (CoV-2) infection. The analysis revealed changes in 3,660 genes in A549, 100 genes in NHBE, and 592 genes in Calu-3 cells with CoV-2 infection. Interestingly, EGOT (9.8-, 3- and 8.3-fold; p < .05) and CSF3 (4.3-, 33- and 56.3-fold; p < .05) were the only two genes significantly elevated in all three cell lines (A549, NHBE and Calu-3, respectively). On the other hand, 39 genes related to cell junctions and cytoskeleton were modulated in lung cells, with DLL1 demonstrating alterations in all cells. Alterations were also seen in several miRNAs associated with the cell junction and cytoskeleton genes modulated in the analysis. Further, matrix metalloproteinases involved in disease pathologies, including MMP-3, -9, and -12 demonstrated elevated expression on CoV-2 infection (p < .05). The study findings emphasize the integral role of cell junction and cytoskeletal genes in COVID-19, suggesting their therapeutic potential. Our analysis also identified a distinct EGOT gene that has not been previously implicated in COVID-19. Further studies on these newly identified genes and miRNAs could lead to advances in the pathogenesis and therapeutics of COVID-19.


Subject(s)
COVID-19 , MicroRNAs , Computational Biology , Cytoskeletal Proteins/metabolism , Epithelial Cells/metabolism , Humans , Intercellular Junctions , Lung/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , SARS-CoV-2
16.
Exp Neurol ; 348: 113923, 2022 02.
Article in English | MEDLINE | ID: mdl-34780773

ABSTRACT

Arginase 1 (A1) is the enzyme that hydrolyzes the amino acid, L-arginine, to ornithine and urea. We have previously shown that A1 deletion worsens retinal ischemic injury, suggesting a protective role of A1. In this translational study, we aimed to study the utility of systemic pegylated A1 (PEG-A1, recombinant human arginase linked to polyethylene glycol) treatment in mouse models of acute retinal and brain injury. Cohorts of WT mice were subjected to retinal ischemia-reperfusion (IR) injury, traumatic optic neuropathy (TON) or brain cerebral ischemia via middle cerebral artery occlusion (MCAO) and treated with intraperitoneal injections of PEG-A1 or vehicle (PEG only). Drug penetration into retina and brain tissues was measured by western blotting and immunolabeling for PEG. Neuroprotection was measured in a blinded fashion by quantitation of NeuN (neuronal marker) immunolabeling of retina flat-mounts and brain infarct area using triphenyl tetrazolium chloride (TTC) staining. Furthermore, ex vivo retina explants and in vitro retina neuron cultures were subjected to oxygen-glucose deprivation (OGD) followed by reoxygenation (R) and treated with PEG-A1. PEG-A1 given systemically did not cross the intact blood-retina/brain barriers in sham controls but reached the retina and brain after injury. PEG-A1 provided neuroprotection after retinal IR injury, TON and cerebral ischemia. PEG-A1 treatment was also neuroprotective in retina explants subjected to OGD/R but did not improve survival in retinal neuronal cultures exposed to OGD/R. In summary, systemic PEG-A1 administration is neuroprotective and provides an excellent route to deliver the drug to the retina and the brain after acute injury.


Subject(s)
Arginase/therapeutic use , Brain Injuries/drug therapy , Neuroprotective Agents/therapeutic use , Retina/injuries , Animals , Arginase/pharmacokinetics , Blood-Brain Barrier , Blood-Retinal Barrier , Brain/metabolism , Brain Ischemia/drug therapy , Cell Survival/drug effects , Humans , Infarction, Middle Cerebral Artery/drug therapy , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/pharmacokinetics , Optic Nerve Injuries/drug therapy , Polyethylene Glycols , Recombinant Proteins/therapeutic use , Reperfusion Injury/prevention & control , Retina/metabolism
17.
Cells ; 10(11)2021 10 28.
Article in English | MEDLINE | ID: mdl-34831161

ABSTRACT

Visual dysfunction resulting from optic neuritis (ON) is one of the most common clinical manifestations of multiple sclerosis (MS), characterized by loss of retinal ganglion cells, thinning of the nerve fiber layer, and inflammation to the optic nerve. Current treatments available for ON or MS are only partially effective, specifically target the inflammatory phase, and have limited effects on long-term disability. Fingolimod (FTY) is an FDA-approved immunomodulatory agent for MS therapy. The objective of the current study was to evaluate the neuroprotective properties of FTY in the cellular model of ON-associated neuronal damage. R28 retinal neuronal cell damage was induced through treatment with tumor necrosis factor-α (TNFα). In our cell viability analysis, FTY treatment showed significantly reduced TNFα-induced neuronal death. Treatment with FTY attenuated the TNFα-induced changes in cell survival and cell stress signaling molecules. Furthermore, immunofluorescence studies performed using various markers indicated that FTY treatment protects the R28 cells against the TNFα-induced neurodegenerative changes by suppressing reactive oxygen species generation and promoting the expression of neuronal markers. In conclusion, our study suggests neuroprotective effects of FTY in an in vitro model of optic neuritis.


Subject(s)
Fingolimod Hydrochloride/therapeutic use , Neuroprotective Agents/therapeutic use , Optic Neuritis/drug therapy , Animals , Caspase 3/metabolism , Cell Death/drug effects , Cell Survival/drug effects , Fingolimod Hydrochloride/pharmacology , Mitochondrial Dynamics , Mitochondrial Proteins/metabolism , Models, Biological , Neurons/drug effects , Neurons/pathology , Neuroprotective Agents/pharmacology , Optic Neuritis/metabolism , Optic Neuritis/pathology , Rats , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Stress, Physiological/drug effects , Tumor Necrosis Factor-alpha/toxicity , bcl-X Protein/metabolism
18.
Processes (Basel) ; 9(2)2021 Feb.
Article in English | MEDLINE | ID: mdl-33954091

ABSTRACT

The enormous library of pharmaceutical compounds presents endless research avenues. However, several factors limit the therapeutic potential of these drugs, such as drug resistance, stability, off-target toxicity, and inadequate delivery to the site of action. Extracellular vesicles (EVs) are lipid bilayer-delimited particles and are naturally released from cells. Growing evidence shows that EVs have great potential to serve as effective drug carriers. Since EVs can not only transfer biological information, but also effectively deliver hydrophobic drugs into cells, the application of EVs as a novel drug delivery system has attracted considerable scientific interest. Recently, EVs loaded with siRNA, miRNA, mRNA, CRISPR/Cas9, proteins, or therapeutic drugs show improved delivery efficiency and drug effect. In this review, we summarize the methods used for the cargo loading into EVs, including siRNA, miRNA, mRNA, CRISPR/Cas9, proteins, and therapeutic drugs. Furthermore, we also include the recent advance in engineered EVs for drug delivery. Finally, both advantages and challenges of EVs as a new drug delivery system are discussed. Here, we encourage researchers to further develop convenient and reliable loading methods for the potential clinical applications of EVs as drug carriers in the future.

19.
PLoS One ; 16(3): e0247901, 2021.
Article in English | MEDLINE | ID: mdl-33735314

ABSTRACT

Vision impairment due to optic neuritis (ON) is one of the major clinical presentations in Multiple Sclerosis (MS) and is characterized by inflammation and degeneration of the optic nerve and retina. Currently available treatments are only partially effective and have a limited impact on the neuroinflammatory pathology of the disease. A recent study from our laboratory highlighted the beneficial effect of arginase 2 (A2) deletion in suppressing retinal neurodegeneration and inflammation in an experimental model of MS. Utilizing the same model, the present study investigated the impact of A2 deficiency on MS-induced optic neuritis. Experimental autoimmune encephalomyelitis (EAE) was induced in wild-type (WT) and A2 knockout (A2-/-) mice. EAE-induced cellular infiltration, as well as activation of microglia and macrophages, were reduced in A2-/- optic nerves. Axonal degeneration and demyelination seen in EAE optic nerves were observed to be reduced with A2 deletion. Further, the lack of A2 significantly ameliorated astrogliosis induced by EAE. In conclusion, our findings demonstrate a critical involvement of arginase 2 in mediating neuroinflammation in optic neuritis and suggest the potential of A2 blockade as a targeted therapy for MS-induced optic neuritis.


Subject(s)
Arginase/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , Inflammation/pathology , Optic Neuritis/pathology , Animals , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/genetics , Inflammation/genetics , Macrophages/pathology , Mice , Mice, Knockout , Microglia/pathology , Optic Nerve/pathology , Optic Neuritis/genetics
20.
J Cell Physiol ; 236(9): 6597-6606, 2021 09.
Article in English | MEDLINE | ID: mdl-33624300

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 that causes coronavirus disease 2019 (COVID-19) binds to the angiotensin-converting enzyme 2 (ACE2) to gain cellular entry. Akt inhibitor triciribine (TCBN) has demonstrated promising results in promoting recovery from advanced-stage acute lung injury in preclinical studies. In the current study, we tested the direct effect of TCBN on ACE2 expression in human bronchial (H441) and lung alveolar (A549) epithelial cells. Treatment with TCBN resulted in the downregulation of both messenger RNA and protein levels of ACE2 in A549 cells. Since HMGB1 plays a vital role in the inflammatory response in COVID-19, and because hyperglycemia has been linked to increased COVID-19 infections, we determined if HMGB1 and hyperglycemia have any effect on ACE2 expression in lung epithelial cells and whether TCBN has any effect on reversing HMGB1- and hyperglycemia-induced ACE2 expression. We observed increased ACE2 expression with both HMGB1 and hyperglycemia treatment in A549 as well as H441 cells, which were blunted by TCBN treatment. Our findings from this study, combined with our previous reports on the potential benefits of TCBN in the treatment of acute lung injury, generate reasonable optimism on the potential utility of TCBN in the therapeutic management of patients with COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19 Drug Treatment , HMGB1 Protein/genetics , Proto-Oncogene Proteins c-akt/genetics , A549 Cells , Bronchi/metabolism , Bronchi/pathology , Bronchi/virology , COVID-19/genetics , COVID-19/pathology , Epithelial Cells/drug effects , Epithelial Cells/virology , Gene Expression Regulation/drug effects , Humans , Lung/drug effects , Lung/pathology , RNA, Viral/genetics , Ribonucleosides/administration & dosage , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...